Interaction effects on proximity-induced superconductivity in semiconducting nanowires
نویسندگان
چکیده
We investigate the effect of electron-electron interactions on proximity-induced s-wave superconductivity in one-dimensional nanowires. We treat the interactions on a self-consistent mean-field level, and find an analytic expression for the effective pairing potential in the presence of interactions, valid for a weakly tunnel coupled wire. We show that for a set of two nanowires placed in parallel on a superconducting substrate, the interaction-induced reduction of the pairing energy could result in the effective interwire pairing potential exceeding the intrawire potential, which is one of the requirements for creating a time-reversal symmetric topological superconducting state in such a two-wire system.
منابع مشابه
Proximity-induced superconductivity in nanowires: minigap state and differential magnetoresistance oscillations.
We study proximity-induced superconductivity in gold nanowires as a function of the length of the nanowire, magnetic field, and excitation current. Short nanowires exhibit a sharp superconducting transition, whereas long nanowires show nonzero resistance. At intermediate lengths, however, we observe two sharp transitions; the normal and superconducting regions are separated by what we call the ...
متن کاملMagnetoelectric effects in superconducting nanowires with Rashba spin-orbit coupling.
Recent experiments in semiconductor nanowires with a spin-orbit coupling and proximity-induced superconductivity exhibit signatures of Majorana bound states predicted to exist in the topological phase. In this Letter we predict that these nanowire systems exhibit unconventional magnetoelectric effects showing a sharp crossover behavior at the topological phase transition. We find that magnetic ...
متن کاملRealizing a robust practical Majorana chain in a quantum-dot-superconductor linear array.
Semiconducting nanowires in proximity to superconductors are promising experimental systems for realizing the elusive Majorana fermions, which, because of their non-abelian anyonic braiding statistics, may ultimately be used as building blocks for topological quantum computers. A serious challenge in the experimental realization of the Majorana fermions is the suppression of topological superco...
متن کاملHard gap in epitaxial semiconductor-superconductor nanowires.
Many present and future applications of superconductivity would benefit from electrostatic control of carrier density and tunnelling rates, the hallmark of semiconductor devices. One particularly exciting application is the realization of topological superconductivity as a basis for quantum information processing. Proposals in this direction based on the proximity effect in semiconductor nanowi...
متن کاملHard Superconducting Gap in InSb Nanowires
Topological superconductivity is a state of matter that can host Majorana modes, the building blocks of a topological quantum computer. Many experimental platforms predicted to show such a topological state rely on proximity-induced superconductivity. However, accessing the topological properties requires an induced hard superconducting gap, which is challenging to achieve for most material sys...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015